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Stability criterion of coupled soliton states

Yijiang Chen
Optical Sciences Centre, Australian National University, Canberra, Australian Capital Territory 0200, Australia

~Received 21 March 1997; revised manuscript received 11 November 1997!

By operator theory, we prove that the stability of coupled fundamental soliton solutions of two coupled
nonlinear Schro¨dinger equations is determined bydP/db criterion ~with P the power or energy andb the
propagation constant!. Examples of the application of the stability criterion to the coupled fundamental soliton
states in nonlinear couplers, birefringent fibers, and birefringent nonlinear planar waveguides are given. The
predictions from the analytical stability criterion are consistent with numerical results.
@S1063-651X~98!03503-X#

PACS number~s!: 42.81.Dp, 42.81.Gs, 42.81.Qb, 42.82.Et
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I. INTRODUCTION

Optical solitons have been the subject of great inte
over last several decades following the works of Refs.@1#,
@2#, and @3#. Either in view of understanding their dynam
evolution or in view of their practical application, the stab
ity of solitons ~which are defined here as stationary objec!
of a nonlinear system is a critical property. Indeed, mu
effort has been devoted to the study of soliton stability@4–
20#. In general, the stability of soliton solutions of a nonli
ear system requires a case by case analysis, very ofte
sorting to a numerical approach@7–19#. Remarkably,
however, it was shown@4–6# that there exists a stability
criterion concerning the sign ofdP/db for the fundamental
bright soliton solutions of the scalar nonlinear Schro¨dinger
equation that involves one wave, as was first demonstr
for the solitons in saturable nonlinear media@4#, later ex-
tended to fundamental nonlinear modes in nonlinear wa
guide structures@5#, and further developed to the fundame
tal solitary waves in media with arbitrary nonlinearity@6#. In
various situations, a nonlinear system may involve two
more waves~pulses! such as nonlinear couplers, birefringe
fibers, and birefringent nonlinear planar waveguides. Na
rally, it is interesting and important to find out wheth
dP/db criterion can be extended to the stability of the fu
damental solitons of the coupled nonlinear Schro¨dinger
equations governing two or more waves~or pulses!. To ad-
dress this issue, we conducted an analytical stability analy
We prove by operator theory that the stability of the coup
fundamental soliton states of the coupled nonlinear Sch¨-
dinger equations involving two waves or pulses is det
mined by the sign ofdP/db. Examples of the application o
the stability criterion to the coupled fundamental solit
states in nonlinear couplers@17#, birefringent fibers@18,19#,
and birefringent nonlinear planar waveguides@20# show that
the predictions from the analytical stability criterion are co
sistent with numerical calculations.

II. COUPLED NONLINEAR SCHRO¨ DINGER EQUATIONS

We consider the coupled mode or coupled nonlin
Schrödinger equations governing the evolution of two wav
or pulses in a general form,
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]T2 1bu1kv1n2~ uuu21auvu2!u1n2hv2u* 50,

~1a!

i
]v
]z

1
1

2

]2v
]T22bv1ku1n2~auuu21uvu2!v1n2hu2v* 50,

~1b!

wherea(>0) is the cross phase modulation coefficient, t
terms involvingh(>0) account for nonlinear coupling,n2
.0 refers to the self focusing nonlinearity,k(>0) is the
linear coupling coefficient governing the coupling of the tw
waves or pulses, and 2b is the normalized birefringence o
the propagation constant difference of the two waves. Fo
birefringent nonlinear planar waveguide@20#, u and v in
Eqs.~1! refer to the amplitudes ofx andy polarizations with
a5A, h5A/2, n251, b;(bx2by)/2, andk50. In the con-
text of a birefringent fiber,u andv can represent either th
pulsed wave amplitudes of thex and y linear polarizations
with a5 2

3 , h5 1
3 , n251, bÞ0, and k50, or the pulsed

wave amplitudes of the left and right circular polarizatio
with a52, h50, n25 2

3 , andb50 and the nonzero coupling
coefficient k proportional to the birefringence (bx2by)/2
@18,19,21#. For a nonlinear coupler,u and v may stand for
either the pulsed wave amplitudes of the symmetric and
tisymmetric modes witha52, h51, n251/2, b(5C)Þ0,
and k50, or pulsed wave amplitudes in individua
waveguides 1 and 2 withn251 andb50, negligible cross
phase modulationa>0, and negligible nonlinear coupling
h>0 butk(5C)Þ0 @22–24#. Because of their conservativ
nature, the general form of the coupled nonlinear Sch¨-
dinger equations~1! has three invariants, namely, the pow
~for spatial solitons! or energy~for temporal solitons!

P5E
2`

`

~ uuu21uvu2!dT, ~2a!

the momentum

M5
i

2 E
2`

` S u
du*

dT
2u*

du

dT
1v

dv*

dT
2v*

dv
dTDdT,

~2b!

and the Hamiltonian
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H5E
2`

` H 1

2 S Udu

dTU
2

1Udv
dTU

2D2b~ uuu22uvu2!

2n2F uuu41uuu4

2
1auuu2uvu21k~uv* 1vu* !

1
h

2
~v2u* 21u2v* 2!G J dT. ~2c!

III. STABILITY ANALYSIS

The coupled nonlinear Schro¨dinger equations~1! admit a
set of bright stationary solutions of the formun(T,z)
5uns(T)exp(ibz1ifu) and vn(T,z)5vns(T)exp(ibz1ifv)
(n51,2,3,...), withuns(T) andvns(T) being the solutions of
the coupled ordinary differential equations

1

2

]2uns

]T2 2~b2b!uns1dl ,ekvns1n2@uns
21~a6h!vns

2#uns

50, ~3a!

1

2

]2vns

]T2 2~b1b!vns1ql ,ekuns1n2@~a6h!uns
21vns

2#vns

50, ~3b!

wheredl5ql51, along with the upper sign, corresponds
fu2fv50 of the linear polarization, andde5qe57 i ~for
k50 whenuns andvns are real! and the lower sign are fo
fu2fv56p/2 of the elliptical polarization. These station
ary solutions are usually obtainable only numerically exc
for some special cases. In the following, however, we w
consider the stability of the fundamental~lowest ordern
t

f
t

t
l

51! soliton states of the stationary solutions characterized
one hump in each amplitude profile ofuns andvns with no
phase~or p phase fork50! difference between the two
components.

To reveal the stability character of the stationary solit
solutionU5@u,v# t5S5@u1s ,v1s# t of Eqs.~3!, we can either
examine the invariantH̄5H1bP or analyze the linearized
equations

i
]du

]z
1

1

2

]2du

]T2 2~b2b!du1dl ,ekdv1~2uu1su2

1auv1su2!du1u1s
2 du* 1au1s~v1s* dv1v1sdv* !

6hv1s~2u1s* dv1v1sdu* !50, ~4a!

i
]dv
]z

1
1

2

]2dv
]T2 2~b1b!dv1ql ,ekdu1~auu1su2

12uv1su2!dv1v1s
2 dv* 1av1s~u1s* du1u1sdu* !

6hu1s~2v1s* du1u1sdv* !50, ~4b!

obtained upon substitution ofu5(u1s1du)exp(ibz1ifu)
and v5(v1s1dv)exp(ibz1ifv) into Eqs. ~1!. This set of
linearized equations, in terms of the real and imaginary p
du5a11 ib1 and dv5a21 ib2 @a1,2;exp(gz) and b1,2
;exp(gz)#, has forms of

2gA5L0B, ~5a!

gB5L1A, ~5b!

with A5@a1 ,a2# t , B5@b1 ,b2# t , subscript t referring to
transpose, and self adjoint operators
L05F 1

2

]2

]T22b1b1n2@u1s
2 1~a7h!v1s

2 #, dl ,ek62n2hu1sv1s

ql ,ek62n2hu1sv1s ,
1

2

]2

]T22b2b1n2@v1s
2 1~a7h!u1s

2 #
G , ~5c!

L15F 1

2

]2

]T22b1b1n2@3u1s
2 1~a6h!v1s

2 #, dl ,ek12n2~a6h!u1sv1s

ql ,ek12n2~a6h!u1sv1s ,
1

2

]2

]T22b2b1n2@3v1s
2 1~a6h!u1s

2 #
G . ~5d!
ntal

c-
If real positiveg.0 of Eqs.~5a! and ~5b! for solutionsA
andB exists, the stationary stateS is unstable. Otherwise, i
is stable. This is equivalent to the invariant

HN5H1bP, ~6!

being a maximum (d2HN,0) or minimum (d2HN.0) at
U5@u,v# t5S5@u1s ,v1s# t , since the stationary solutions o
Eqs.~3! are those at whichdHN50. In terms of the real par
of the perturbation functionsA, the linearized equations~5a!
and ~5b! read
L0L1A52g2A. ~5e!

For the fundamental solitonsS5@u1s ,v1s# t , operatorL1 has
at least one positive eigenvalue@becauseL1(dS/dT)50 de-
rived by taking derivative of Eqs.~3! with respect toT, and
dS/dT is not the fundamental eigenfunction ofL1#, whereas
L0 has zero as its largest eigenvalue with the fundame
eigenfunctionS @i.e., L0S50 of Eqs.~3!# and all the other
eigenvalues ofL0 are negative. This fundamental eigenfun
tion S of L0 is orthogonal toA as g^StuA&52^StuL0B&
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52^BtuL0S&50, where^GtuK &5*2`
` GtK dT. Thus, so far

as the solutionsA with gÞ0 are concerned, Eq.~5! needs to
be solved only in the subspace orthogonal toS. In this sub-
space the inverse operatorL0

21 exists; and for the fundamen
tal soliton stateS5@u1s ,v1s# t , the operatorL0(L0

21) is
negative definite~because all the eigenvalues ofL0 or L0

21

are nonpositive!. The variational principle can then be a
plied for obtaining the largest valueg2 of Eq. ~5e!

g25max
^AtuL1A&

2^AtuL0
21A&

. ~7!

Since the denominator2^AtuL0
21A& is a positive quantity

ensured by the negativeness ofL0
21, the value of the numera

tor of Eq. ~7! G5max̂ AtuL1A& decides whether there exis
an exponential growthg2.0 from a perturbation for the
fundamental soliton stateS. If G.0, a realg.0 exists, im-
plying that the fundamental soliton state is unstable;G,0
means thatg is imaginary, and no exponential growth resu
from a perturbation. With the help of the Lagrange multipl
technique, together with spectral analysis~with details del-
egated to Appendix A!, we find that the signg2;G
5max̂ AtuL1A&, and that the stability of the fundament
solitons of the coupled nonlinear Schro¨dinger equations is
determined by the number of the positive eigenvalues of
eratorL1 and the sign ofdP/db. If L1 has one and only one
positive eigenvalue, dP/db.0 @P5*2`

` (uu1su2

1uv1su2)dT# corresponds to the stable soliton stateG;g2

,0, whereasdP/db,0 is associated with an unstable so
ton state (G;g2.0). On the other hand, ifL1 has two~or
more! positive eigenvalues,G;g2.0 and the soliton state
S5@u1s ,v1s# t is unstable.

This stability criterion involving the number of the pos
tive eigenvaluesL1 along with the sign ofdP/db for the
stable soliton stateS is, in fact, a direct consequence of th
normalized HamiltonianHN of Eq. ~6! being a local mini-
mum atU5S. The reason is that the normalized Hamiltoni
HN at S for a stable state achieves a local minimumdHN
50. If

d2HN52^BtuL0B&2^AtuL1A&,

derived by substitutingu5(u1s1a11 ib1)exp(ibz1ifu) and
v5(v1s1a21 ib2)exp(ibz1ifv) into Eq. ~6!, is positive,S
is stable. Otherwise, it is unstable. SinceL0 for the funda-
mental solitons is negative definite,2^BuL0B& is positive.
Also, G5max̂ AtuL1A&,0 or 2^AuL1A&.0 whenL1 has
only one positive eigenvalue anddP/db.0, as aforemen-
tioned. We then conclude thatd2HN.0, corresponding to a
local minimum of HN or a stable soliton state, whe
dP1 /db.0 andL1 has one positive eigenvalue.

This stability criterion derived above for the fundamen
soliton states of the coupled nonlinear Schro¨dinger equations
simplifies the stability problem from solving the coupled o
dinary differential equations of Eqs.~5a! and ~5b! involving
operatorsL0 andL1 to the determination of the numberp of
the positive eigenvalues of operatorL1 and the sign of
dP/db. The numberp can usually be derived analyticall
either by solving the eigenvalue problemL1h5lh directly
or by examining at limiting points the positive eigenvalues
r

p-

l

f

L1 along with the fact that the number of the positive eige
values ofL1 changes only at a bifurcation~see Appendix B!.
These details will be illustrated in the following examples

IV. STABILITY OF FUNDAMENTAL SOLITON STATES
IN NONLINEAR COUPLERS

We first consider the stability of the fundamental solit
states in nonlinear couplers as an example of application
the stability criterion. For a nonlinear coupler, the analy
can be based on either the composite symmetric and a
symmetric modes ofu5us and v5ua , or modes of indi-
vidual waveguides ofu5u1 andv5u2 which are related to
the former byus5(u11u2)/& and ua5(u12u2)/& @25#.
In terms of the symmetric and antisymmetric modes, the
rameters in Eqs.~1! take a52, h51, n25 1

2 , b5C, andk
50, and with u5u1 , v5u2 , a5h5b50, n251, and k
5C in Eqs.~1!. By settingu, v5us , ua , or u1 u2 , Eqs.~3!
can be shown to support two families of the fundamen
soliton sates. One class of the stationary solutions has
analytical form

u1s52Ab2k sech@A2~b2k!T#, v1s50. ~8a!

in terms of the symmetric and antisymmetric modesus and
ua , or

u1s5v1s5A2~b2k!sech@A2~b2k!T# ~8b!

in terms ofu1 andu2 , which can survive aboveb.k. The
other class of stationary solutions has nonzero or differ
magnitudes in both components, and can only be obtai
numerically @see, e.g., the inset of Fig. 1~a!#. This class of
solutions exists above a certain critical valueb5bc , and it
bifurcates from the family of the soliton solutions of Eq.~8!
at b5bc , as shown in energy P@5*2`

` (uu1su2

1uv1su2)dT# versusb diagram of Fig. 1~a!, where the family
of solutions~8! is referred to as class I and the other one
identified as class II in the figure. The bifurcation occurs
b5bc5 5

3 k, which can be derived from a perturbatio
method.

For class II solutions with nonzero or unequal magnitud
in both components that bifurcates from class I solutions
b5bc , operator L1 has only one positive eigenvalue
dP/db.0 then indicates stable soliton sates, correspond
to the solid curve of Fig. 1~class II!, anddP/db,0 implies
unstable soliton sates, identified by the dashed curve in

FIG. 1. EnergyP vs propagation constantb in ~a!, andH of Eq.
~2c! versusP in ~b!, for a nonlinear coupler.
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57 3545STABILITY CRITERION OF COUPLED SOLITON STATES
figure ~class II!. This conclusion on the stability of class
soliton solutions is consistent with the numerical stabil
analysis@17#.

The fact thatL1 for class II soliton solutions has on
positive eigenvalue here is derived by recognizing that~a!
the number of the positive eigenvalue ofL1 can change only
through a bifurcation~see Appendix B! and there is no bi-
furcation over its existence region betweenb5bc and b
→` @Fig. 1~a!#, and~b! L1 has only one positive eigenvalu
at b→`. At b→`, u1Þ0 and u2→0 or u1→0 and u2

Þ0, and operatorL1;b@0
L10

L11

0 # or L1;b@0
L11

L10

0 #, with

L105@]2/](A2bT)2#2116 sech2(A2bT) and L11

5@]2/](A2bT)2#21. Because of its diagonal, the eigenva
ues of operatorL1 are a superposition of the eigenvalues
L10 and L11. By directly solving the eigenvalue problem
L10,11f 5l10,11f analytically, or by borrowing the result from
the analysis for linear waveguides@26#, L10 is found to have
only one positive eigenvaluel10p53 with the second eigen
valuel10s50, andL11 has no positive eigenvalue. Operat
L1 then has only one positive eigenvaluelp53b at b
→`, and consequently has one positive eigenvalue ove
whole existence region.

For the class I soliton solutions of Eq.~8!, L1 has only
one positive eigenvalue as well below the bifurcation va
b,bc ; and accordinglydP/db.0 means that this class o
soliton states is stable forb,bc ~marked by the solid curve
in Fig. 1!. This conclusion of one positive eigenvalue
operatorL1 below b,bc for class I soliton solutions is de
rived by directly examining the eigenvalue problemL1f
5lf with L15@0

L1s
L1a

0 #, L1s5
1
2 (]2/]T2)2b1k16(b

2k)sech2@A2(b2k) T# and L1a5 1
2 (]2/]T2)2b2k16(b

2k)sech2@A2(b2k) T#. For anyb(.k), L1s is found ana-
lytically to have one positive eigenvaluel1sp53(b2k),
and its second eigenvaluel1s050. The largest eigenvalue o
L1a is l1aL53b25k, which is negative belowb,bc
5 5

3 k. Therefore,L1 has only one positive eigenvaluel1p
53(b2k) below bifurcationb,bc .

On the other hand, above the bifurcationb.bc5 5
3 k,

l1aL53b25k.0; operatorL1 for the class I soliton solu-
tions has two positive eigenvaluesl1p5l1sp and l1aL .
Consequently, class I soliton states become unstable a
the bifurcationb.bc , as identified by the dashed curve
Fig. 1. These conclusions from the stability criterion for cla
I soliton states again agree with the results from numer
calculations@17#.

V. STABILITY OF FUNDAMENTAL SOLITON STATES
IN BIREFRINGENT FIBERS

A second example of the application of the stability c
terion is the stability of the fundamental soliton states
birefringent fibers. In terms ofx and y linear polarizations
u5ux and v5uy with a5 2

3 , h5 1
3 , n251, b5Db, andk

50, or circular polarizationsu5ur5(ux1 iuy)/& and v
5ul5(ux2 iuy)/& with a52, h50, n252/3, b50, and
k5Db, Eqs.~1! describe the pulse evolution in birefringe
fibers. For this case, Eqs.~1! admit two families of the fun-
damental soliton states. One is the slow soliton

u1s5A2~b2k!sech@A2~b2k!T#, v1s50 ~9a!
f

its

e

ve

s
al

for b.k, and the other is the fast soliton

u1s50, v1s5A2~b1k!sech@A2~b1k!T# ~9b!

for b.bc51.53k, in terms of the linear polarizations. I
terms of the circular polarizations, the solutions are

u1s5v1s5Ab2ksech@A2~b2k!T# ~9a!

for the slow soliton, and

u1s52v1s5Ab1k sech@A2~b1k!T# ~9b!

for the fast soliton. These are the fundamental states bec
L0 for the slow soliton aboveb.k and for the fast soliton
above the bifurcation valueb.bc51.53k ~where higher or-
der elliptically polarized solitons emerge! has no positive
eigenvalue. The corresponding energyP52A2(b2k) of
the slow soliton andP52A2(b1k) of the fast soliton are
plotted graphically in Fig. 2.

For the fundamental solitons, we can apply the stabi
criterion. Following the analytical approach of Sec. IV, o
erator L1 for the slow soliton is found to have only on
positive eigenvalue in the region of its existence (b.k), but
for the fast soliton it has two positive eigenvalues aboveb
.bc . Thus dP/db5A2/(b2k).0 means that the funda
mental slow soliton in the birefringent fiber is stable. On t
other hand, the fundamental fast soliton aboveb.bc is un-
stable in spite of itsdP/db.0. These conclusions are con
sistent with the numerical stability analysis presented in R
@18#.

VI. STABILITY OF SOLITON STATES IN BIREFRINGENT
NONLINEAR WAVEGUIDES

Now we examine the stability of the fundamental solit
states in birefringent nonlinear planar waveguides for wh
the parameters in Eqs.~1! take a5A, h5A/2, n251,
b,0 andk50 @20#. The stationary soliton states of corre
sponding Eqs.~3! can have TE type,

u1s5A2~b1ubu!sech@A2~b1ubu!T#, v1s50,
~10a!

TM type

FIG. 2. EnergyP vs propagation constantb in ~a!, andH of Eq.
~2c! vs P in ~b!, for a birefringent fiber. The solid curves represe
stable solitons, dashed curves unstable soliton states, and da
dotted curves higher order soliton states.
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u1s50, v1s5A2~b2ubu!sech@A2~b2ubu!T#,
~10b!

and linear and elliptical polarizations~u1sÞ0 and v1sÞ0!
that are obtainable only numerically. The linear and ellip
cally polarized soliton states may bifurcate from either
TE or TM soliton, depending on the valueA. For 0,A
,2/3, both linearly (L) and elliptically (E) polarized soli-
tons branch out from the TE soliton as shown in Fig. 3
A5 1

3 ; when 2
3 ,A,2, the elliptically polarized soliton stat

bifurcates from the TE soliton and the linearly polarized so
ton state branches out from the TM soliton~see Fig. 4 for
A51!; while 2,A,`, both linearly and elliptically polar-
ized solitons bifurcate from the TM soliton with the case
A54 illustrated in Fig. 5. Although the exact soliton sol
tions with linear and elliptical polarizations require nume
cal approach, their bifurcation points can be derived anal
cally by a perturbation method@27#. The bifurcation of
solitons with the linear polarization from the TM or TE so
ton occurs at

b5bcL56
~A12A1121!214

~A12A1121!224
ubu, ~11!

and the elliptical polarized soliton state branches out fr
the TM or TE soliton at

FIG. 3. Power P̄(5P/Aubu) vs propagation constan
b̄(5b/ubu) in ~a!, and H̄(5H/ubu3/2) of Eq. ~2c! vs P̄ in ~b!, for
birefringent nonlinear planar waveguides withA5

1
3 . The solid

curves represent stable solitons, dashed curves unstable s
states, and dashed-dotted curves higher order soliton states.

FIG. 4. Same as Fig. 3, but withA51.
-
e

r

-

f

i-

b5bce56
~A4A1121!214

~A4A1121!224
ubu. ~12!

These analytical expressions coincide with those from
numerical calculations.

To analyze the stability of the soliton states by the cri
rion derived in Sec. III, we first need to identify whether th
soliton states in question are the fundamental soliton sta
i.e., whether operatorL0 of Eq. ~5c! has zero as its larges
eigenvalue, or whether

DD52^AtuL0
21A& ~13!

of the denominator of Eq.~7! is a positive quantity.

A. Stability of the TE soliton

For the TE soliton,L0@0
L0u

L0d

0 # is a diagonal operator

The eigenvalues of L0u5 1
2 (]2/]T2)2b2ubu12(b

1ubu)sech2A2(b1ubu) T and L0d5 1
2 (]2/]T2)2b1ubu

1A(b1ubu)sech2A2(b1ubu)T determine the eigenvalues o
L0 . L0u has the zero as its largest eigenvalue~sinceL0uu1s
50!, andL0d is found analytically to have its largest eige
value smaller than zero whenA,2 andb.bce ~the bifur-
cation point for the elliptically polarized soliton!. This means
that the TE soliton is a fundamental soliton, and the stabi
criterion of Sec. III is applicable whenA,2 andb.bce .
For this TE soliton, operatorL15@0

L1u
L1d

0 # has two positive

eigenvalues, for both L1u5 1
2 (]2/]T2)2b2ubu16(b

1ubu)sech2A2(b1ubu)T and L1d5 1
2 (]2/]T2)2b1ubu

13A(b1ubu)sech2A2(b1ubu)T have a positive eigenvalue
when 0,A,2/3 for b,bcL ~the bifurcation value of the
linearly polarized soliton! and when 2/3,A,2 for any b
(.2ubu above which the TE soliton exists!. The TE soliton
is then unstable within 0,A,2/3 andbce,b,bcL ~identi-
fied by the dashed curve in Fig. 3 forA5 1

3!, and within 2
3

,A,2 andb.bce ~see, e.g., Fig. 4 forA51!. On the other
hand, within 0,A, 2

3 for b.bcL L1 has only one positive
eigenvalue~as L1u still has one positive eigenvalue, i.e
]u1s /]T50, but L0d has no positive eigenvalue!. dP/db
(5A2/(b1ubu)).0 then indicates that the TE soliton
stable within 0,A,2/3 andb.bcL . This is shown graphi-
cally in Fig. 3 for A5 1

3 , marked by the solid curve. Thes
predictions from stability criterion are confirmed by nume
cal simulations to Eqs.~1!.

B. Stability of the TM soliton

Analytic analysis similar to that performed for the T
soliton reveals that operatorL0 for the TM soliton has no
positive eigenvalue, and it is thus the fundamental soli
within 0,A,2 for anyb ~.ubu above which the TM soli-
ton exists!, and within 2,A,` for b,bce . The stability of
the TM soliton in these regions is then determined by
number of positive eigenvalues ofL1 and the sign ofdP/db.
OperatorL1 for the TM soliton has only one positive eigen
value in 0,A, 2

3 for any b(.ubu) and in 2
3 ,A,` for b

,bcL, whereas it has two positive eigenvalues in 2/3,A
,` for b.bcL . We then conclude thatdP/db
(5A2/(b2ubu)).0 indicates the stable TM soliton whe

ton
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0,A,2/3 for any b(.ubu) and when 2/3,A,` for b
,bcL , whereas the TM soliton is unstable when 2/3,A
,2 for anyb.bcL and when 2,A,` for bcL,b,bce .
These distinctive stability characteristics of the TM solit
within three regions 0,A,2/3, 2/3,A,2 and 2,A,`
are illustrated diagrammatically in Figs. 3, 4, and 5 for t
cases ofA5 1

3 , 1, and 4, where the dashed curves repres
the unstable soliton and the solid curves stand for the st
soliton. Again, the predictions from the stability criterio
conform to the numerical stability analysis of Eqs.~1!.

C. Stability of linearly and elliptically polarized solitons

OperatorL0 for the solitons with linear and elliptical po
larizations is not diagonal; it is therefore convenient to ide
tify the fundamental soliton states by examining the quan
DD of Eq. ~13!. Writing Q5L0

21A andA5L0Q, we have

DD52^QtuL0Q&. ~14!

Substitution ofQ5@q1 ,q2# t andL0 of Eq. ~5c! into Eq.~14!
produces

DD5E
2`

` F1

2 S us1

]

]T

q1

us1
D 2

1
1

2 S vs1

]

]T

q2

Vs1
D 2

6n2A~vs1q12us1q2!2GdT, ~15!

with the upper sign for the linear polarization and the low
sign for the elliptical polarization. Equation~15! indicates
DD.0 (n2A.0) for the linear polarization, whereas th
positiveness ofDD for the elliptical polarization is not guar
anteed because of the minus sign in front of the last te
This means the linearly polarized soliton is a fundamen
soliton, but the elliptically polarized one is not.

To ascertain the stability of the linearly polarized solit
by the stability criterion of Sec. III, we now must examin
operatorL1 . By taking the limit ofb→`, we find analyti-
cally that L1 has two positive eigenvalues when 0,A, 2

3 ,
and one positive eigenvalue when 2/3,A,`. Since there is
no bifurcation overbcL,b,`, this means that over th
whole region of its existencebcL,b,` L1 for the linearly
polarized soliton has two positive eigenvalues when 0,A
,2/3 and one positive eigenvalue when2

3 ,A,` ~Appen-
dix B!. We then have the unstable linearly polarized solit
within 0,A, 2

3 for any b.bcL , and with A. 2
3 dP/db

FIG. 5. Same as Fig. 3, but withA54.
nt
le

-
y

r

.
l

n

.0(,0) indicates a stable~unstable! linearly polarized soli-
ton. The stability feature of the linearly polarized solito
within different regions 0,A,2/3, 2/3,A,2 and 2,A
,` are shown in Figs. 3, 4, and 5 forA5 1

3 , 1, and 4. These
predictions are consistent with numerical calculations.

VII. DISCUSSION

A. Conjectured stability criterion of minimum H of Eq. „2c…

In studying soliton states of birefringent nonlinear plan
waveguides, Ref.@20# proposed a stability criterion by as
suming that the soliton state with minimum ofH of Eq. ~2c!
in the H2P diagram is stable. This conjectured criterio
happens to single out some stable soliton states, determ
by the dP/db criterion along with the number of positiv
eigenvalues ofL1 in the three examples given. However, f
the fundamental solitons that do not have a minimumH in
the H2P diagram, the conjectured criterion gives either
false prediction or no prediction of the stability of the solito
states.

Consider the first example of the nonlinear coupler. T
HamiltonianH of Eq. ~2c! versus energyP diagram of Fig.
1~b! for the nonlinear coupler indicates that the class I so
ton has minimumH from P/Ak50 to P/Ak54.569 or from
b/k51 to b/k51.6524 and aboveP/Ak.4.569 or b/k
.1.9534 the class II soliton state has a minimumH. This,
according to the conjectured criterion, implies that the clas
and II soliton states are stable in the corresponding param
ranges, and that they can be unstable beyond the reg
However, based on thedP/db criterion of Sec. III in addi-
tion to these regions the class I soliton state is stable e
aboveb/k.1.6524 orP/Ak.4.569 up to the bifurcation
point b/k5bc /k55/351.6667 or P/Ak54.619, and the
class II soliton state is stable even belowb/k,1.9534 or
P/Ak,4.569, continuing tob/k51.85 orP/Ak54.555, at
which P is at a minimum. These stability characteristics
soliton states in the nonlinear coupler predicted by
dP/db criterion are completely in agreement with numeric
stability analysis reported in Ref.@17#.

Another example is birefringent nonlinear plan
waveguides. Apart from elliptical polarization, soliton stat
in birefringent nonlinear planar waveguides forA54 have
the bifurcation characteristic of Fig. 5, similar to that in th
nonlinear coupler of Fig. 1~where the antisymmetric soliton
corresponding to the TE soliton of Fig. 5 is not included!.
BetweenP50 and 1.268 orb51 and 1.201, the TM soliton
has the minimumH of Eq. ~2c!, and aboveP.1.268 orb
.2.1 the linearly polarized soliton has the minimumH. Ac-
cording to the conjectured criterion of minimumH, the TM
soliton and the linearly polarized soliton are stable within t
corresponding regions, and they can be unstable outside
regions. ThedP/db criterion indicates that, in addition to
these regions, the TM soliton is stable even beyondb
.1.201 orP.1.268 up to the bifurcationb5bcL51.25 or
P5&, and the linearly polarized soliton state is stable ev
below b,2.1 or P,1.268 up tob.1.6 or P51.21, at
which P is at a minimum. These predictions accord wi
numerical stability analysis. The conjectured criterion
minimum H clearly cannot identify these stable branch
that do not have a minimumH.
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Similarly, according to the conjectured criterion, forA5 1
3

only the TM soliton is stable@Fig. 3~b!#, and forA51 the
TM soliton is stable belowb,bcL and the linearly polarized
soliton is stable aboveb.bcL @Fig. 4~b!#. These conclusions
again happen to agree with those drawn from the stab
criterion derived in Sec. III. Nevertheless, beyond these
rameter ranges the criterion of minimum of the Hamiltoni
H cannot conjecture the stability of the fundamental solito
e.g., the TE soliton, which do not have minimumH, and
may reckon them to be unstable. The presentdP/db crite-
rion can ascertain unequivocally that within 0,A,2/3 the
TE soliton is stable forb.bcL and is unstable forbcL.b
.bce ~see Fig. 3, withA5 1

3!, and that within 2/3,A,2 the
TE soliton is unstable forb.bce . In short, the criterion of
minimum HamiltonianH can possibly identify part of the
stable branches predicted by the criterion derived in Sec.
but it cannot reveal, or gives an incorrect prediction of,
stability characteristic of the fundamental solitons that do
have minimumH.

B. Stability near threshold and linearly growing perturbation

Based on the linear stability analysis, the sign ofdP/db
determines the stability of the fundamental solitons of
coupled nonlinear Schro¨dinger equations, when operatorL1
has one positive eigenvalue. AlthoughdP/db.0 (,0) in-
dicates a stable~unstable! soliton state, the degree of th
stability ~instability! may differ from point to point in the
P-b curve. Near the thresholddP/db50, the soliton state
associated withdPdb.0 may have a weak stability, and it
stationary propagation can be destroyed by a large pertu
tion, as a consequence of shifting a soliton state from a st
region to an unstable region, because of its small stab
region. Such shifting can possibly be caused by the e
tence, for any set of parameters, of linearly growing pert
bation solutions

A~T,z!5A1~T!z1A0~T!, B~T,z!5B1~T!z1B0~T!
~16!

to the linearized equations

]A

]z
52L0B,

]B

]z
5L1A, ~17!

which may manifest in the absence of exponential grow
perturbation~when dP/db.0, andL1 has one positive ei-
genvalue!. A perturbation of this type will not destroy th
stationary propagation of the soliton, as in the case of
exponentially growing perturbation, but merely transform t
soliton to a neighboring soliton state, similar to a single no
linear Schro¨dinger equation@4#. In our analysis, we have
ignored this type of trivial instability, as it is beyond th
scope of the present paper.

VIII. CONCLUSIONS

We proved by operator theory that the stability of t
coupled fundamental soliton states of the two coupled n
linear Schro¨dinger equations is determined by the number
positive eigenvalues of operatorL1 ~which changes only a
bifurcation! of the linearized equations and the sign
y
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dP/db. Examples of the application of the stability criterio
to fundamental soliton states in nonlinear couplers, birefr
gent fibers, and birefringent nonlinear planar waveguid
were given. The predictions from the stability criterio
agreed with the numerical calculations.

APPENDIX A

We prove here that the sign of the numerator

g2;G5max̂ AtuL1A& ~A1!

of Eq. ~7! is decided by the number of positive eigenvalu
of L1 and the sign ofdP/db. According to the method of
indeterminate Lagrange multipliers, maximization of qua
tity ^AtuL1A& in Eq. ~A1! is equivalent to solving the equa
tion

L1F5lF1qS ~A2!

for the largest eigenvaluel, which together with constantq
is determined by the conditions of orthogonality^FtuS&50
and normalization̂FtuF&51. Expanding

F5 (
m51

`

amFm , ~A3a!

S5 (
m51

`

cmFm ~A3b!

of Eq. ~A2! in the complete set of eigenfunctionsFm of the
operatorL1 gives rise toF5q(m51

` cmFm /(lm2l), with lm

the eigenvalues ofL1 . This expansionF, substituted into the
orthogonality condition̂ FtuS&50, produces an equation fo
determiningl,

qg~l!5q (
m51

` cm
2

lm2l
50, ~A4!

whereq50 only whenl5lm with the eigenfunction ofL1
orthogonal toS. Equation~A4! indicates that the largestl
must either lie between the largest eigenvaluels1 and the
second largest eigenvaluels2 of operatorL1 with the eigen-
functions nonorthogonal toS, or be equal to the largest e
genvaluel0 of L1 with the eigenfunction orthogonal toS.
That is, the number and character of the positive eigenva
of L1 determine the sign of the largest eigenvaluel. From
Eqs.~3!, we haveL1(dS/dT)50. This means thatL1 has a
zero eigenvalue with the eigenfunctiondS/dT that is not the
fundamental eigenfunction ofL1 . ThusL1 has at least one
positive eigenvalue for its fundamental eigenfunction non
thogonal toS. If L1 has one and only one positive eige
value, the sign of the largestl5lmax, and consequentlyG
and the stability is then determined by the sign ofg(0). This
is because Eq.~A4! indicates thatlmax.0 when g(0),0,
andlmax,0 wheng(0).0. g(0) here is related to the powe
or energyP5*2`

` (uu1su21uv1su2)dT by

g~0!5 (
m51

` cm
2

lm
5^StuL1

21S&5^Stu]S/]b&5
1

2

dP

db
,

~A5!
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where expansion~A3b!, along with its derivation

(
m51

`
cm

lm
Fm5L1

21S, ~A6!

was used in establishing the second equality, and the rela
L1]S/]b5S, obtained from differentiating equations~3!,
was invoked in establishing the third identity. In Eqs.~A5!
and ~A6!, the inverse operatorL1

21 taken is justified by the
fact that the expansionS in terms of eigenfunctionsFm does
not involve eigenfunctiondS/dT of L1 with zero eigenvalue
(l250) because of orthogonalityc25^StudS/dT&50. From
Eq. ~A5!, it follows thatdP/db.0 corresponds to the stab
soliton state asg(0).0 giveslmax,0 (G;g2,0), whereas
dP/db,0 is associated with an unstable soliton state
causeg(0),0 yieldslmax.0 (G;g2.0).

On the other hand, ifL1 has two~or more! positive eigen-
values, the largestl must either lie between the two large
positive eigenvaluels1 and ls2 of operatorL1 with the
eigenfunctions nonorthogonal toS, or be equal to the larges
positive eigenvaluel0 of L1 with the eigenfunction orthogo
nal toS. In either case, the largestl5lmax must be positive;
thereforeG;g2.0 and the soliton stateS5@u1s ,v1s# t is
unstable.

APPENDIX B

We show here that the number of positive eigenvaluesL1
of the coupled nonlinear nonlinear Schro¨dinger equations
changes at bifurcation where new families of soliton sta
emerge. When the number of positive eigenvalues ofL1
changes, one of the eigenvalues ofL1 must pass through
zero, i.e.,L1 has a zero eigenvalueL1G50. Proof of the
change of the number of positive eigenvalues ofL1 at bifur-
cation is then equivalent to prove that new families of solit
states emerge when a stationary soliton stateS0 , at which
L1G50, changes toS01dS, as b varies from b0 to b0
1db.

We write soliton statesS at b, slightly deviated from the
state ofS0 at b0 , in the form of

S5S01dS, ~B1a!

b5b01db, ~B1a!

which, substituted into Eqs.~3!, give

L1dS2dbS05dbdS2D1~dS!22D2~dS!32D3dStJdS

2D4dSdStJdS, ~B2!
ett

.

on

-

s

n

where dS5@dvs1

dus1#, (dS)25@
dvs1

2

dus1
2

#, (dS)35@
dvs1

3

dus1
3

#, D1

5n2@ (a6h)vs1

3us1
3vs1

(a6h)us1#, D25n2@0
1

1
0#, D35n2(a

6h)JS0 , D450.5n2(a6h)J, S05@vs1

us1#, and J5@1
0

0
1#.

The terms on the right hand side of Eq.~B2! are of higher
order, compared with those on the left hand side. IfL1 does
not have an eigenvalue with zero eigenvalue atS0(b0), dS is
qualitatively the same asS. From Eq.~B2!, this solutiondS,
to the first order, is of the form

dS5dbL1
21S0 . ~B3!

On the other hand, ifL1 has a zero eigenvalueL1G50 at
S0(b0), the solution to Eq.~B2!, to first order, is

dS5dbL1
21S01sG, ~B4!

with s a constant. Multiplying Eq.~B2! by G, and perform-
ing subsequent integration, we have

Q52dbE GtS0dT5E GtF dT, ~B5!

whereF represents all the higher order terms on the rig
hand side of Eq.~B2!. Since terms2dbS0 and F are of
different orders, the equality of Eq.~B5! is meaningful only
when the quantityQ50. This meansG is orthogonal toS0
and orthogonal toC5dbL1

21S0 . On the other hand, subst
tution of dS5C1sG5dbL1

21S01sG into Q5*GtFdT
50 yields

E
2`

`

Gt@db~C1sG!2D1~C1sG!22D2~C1sG!3

2D3~C1sG! tJ~C1sG!

2D4~C1sG!~C1sG! tJ~C1sG!#dT50 . ~B6!

Equation~B6! is a cubic polynomial equation yielding up t
three solutions ofs, and consequently up to three solutio
dS. We then have bifurcation. This indicates that bifurcati
occurs whenL1 has a zero eigenvalue, i.e., whenL1 changes
the number of positive~negative! eigenvalues.

Consider examples in the text.S0 is a symmetric~even!
function, andG is an antisymmetric~odd! function. Equation
~B6! givess50 anddS5dbL0

21S for one soliton state, and

s2>
db*2`

` Gt@G22D1~GL1
21S0!22D3~GtJL1

21S0!#dT

*2`
` Gt@D2G31GD4~Gt JG!#dT

anddS5dbL1
21S1sG for the other bifurcating soliton so

lutions.
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